Two years ago, a group of Nobel
laureates published a letter in support of "Precision
Agriculture (GMOs)", or more specifically, Golden Rice to combat
vitamin A deficiency (VAD) in Africa and Asia.
This begs the question, what's so
precise about GMOs, or more specifically Golden Rice?
No doubt the DNA construct to make the GM rice generate its golden colour was very precisely assembled in preparation for its insertion into rice cells.
The artificial DNA consists of a gene
adapted from maize and a gene adapted from a bacterium whose products
together act on material naturally present in rice grain to produce
carotene (a pre-cursor for vitamin A). Added to these two genes are
precise rice-grain 'promoters' (DNA 'on'-switches which make the
genes work): these ensure that the artificial carotene is formed
precisely in the rice grain
and not anywhere else in the plant where it could cause havoc.
Also added to the
GM mix is a gene for an enzyme (a bio-reactive protein) which has
nothing to do with carotene formation, but can be used to precisely
identify which cells have been successfully transformed into the
golden version.
All this precise
engineering is presumably what's meant by the 'precision' in
precision agriculture, because from then on things seems to fall
apart.
The two precise
genes don't churn out carotene with the clockwork precision intended:
the developers of Golden Rice are struggling to create a rice strain
with enough carotene to have any possibility of affecting VAD.
The grain-specific
promoter has turned out not to be so very grain-specific after all
and causes havoc elsewhere in the plant probably due to the diversion
of chlorophyll- and growth-regulator-synthesis into the (unnecessary)
production of carotene.
Back in 2002, it
took the creation of more than 1,000 gene transformation events to
yield two, hopeful, Golden Rice strains which were taken forward for
development.
The most promising
GM event to emerge from this mass creation seems to have been under
development for seven years before any one noticed it had an
unexpected, unintended chunk of DNA missing. It's replacement,
Golden Rice hopeful No.2, was developed for a further five years
before it was recognised as a stunted no-hoper because the artificial
genes had landed in a gene vital for growth regulation.
By
2017, a single Golden Rice strain had been submitted to regulators in
America, Canada, and Australia and New Zealand for an evaluation.
The US administration had no interest in it because of the strain's
lack of nutritional benefit [2]. Indeed, the carotene content of the
GM rice notified to the FDA was both low and variable with a mean
level paradoxically lower
than that of the prototype way back in 2000.
Reported
variability of the carotene content of Golden Rice may be due to
technical factors. For example, 'carotene' refers to a collection of
related substances only one of which (β-carotene)
is a precursor for vitamin A: measurements of whole carotene content
rather than β-carotene
will inflate the suggested success. Different extraction methods and
different processing of the rice prior to analysis will also affect
the final suggested carotene content.
No matter how
precise the artificial DNA is, rice is wind-pollinated, and the
uncontrollable global contamination of rice with Golden Rice genes is
fully anticipated [1].
OUR COMMENT
All
this sounds like a very hit-and-miss sort of 'precision'. But then,
two-thirds of the nobel laureates who altruistically signed the
letter supporting the notion of precision agriculture (GMOs) were
specialists in subject areas unrelated to agri-biotech, namely
medicine, physics, economics, peace and literature (the
remainder had won their prize in the 'chemistry' section and may or
may not have any relevant advanced knowledge).
The
'low and variable' levels of vitamin A precursor in Golden Rice may
be an intrinsic feature of rice.
This is because the lack of any mechanism for carotene sequestration
(such as crystallisation or oil deposition) in the rice grain, plus
the availability of the necessary carotene-precursor might be
limiting factors. Both these points were noted in 2005 but dismissed
as "of no immediate concern". However, they could be part
of the reason for the variability of the carotene levels especially
in different Golden Rice genetic backgrounds. They also might
contribute to the rapid loss of carotene from Golden Rice in storage
[2].
The reason why so much time, effort, scientific expertise and money
has been spent on hopeless,
mutant Golden Rice strains seems to be that the developers were so
convinced of the precision of what they were doing that they never
checked the DNA for mutations before rushing ahead with the project.
This is akin to building a house on quicksand because you haven't
carried out a basic survey of the ground.
Could it be that only rice weakened by the artificial DNA insertion
can be coerced by its novel genes into producing substantial
quantities of carotene?
Tell
our regulators to ditch their support for the high-tech, Golden Rice
white elephant in favour of projects to make available the
sustainable production of fresh
greens
in areas of VAD.
Background
[1] GOLDEN RICE: A CURIOUS SORT OF SAFETY EVALUATION - October 2018
[2] NOVEL GOLDEN SUBSTANCES - October 2018
SOURCES:
- Allison Wilson and Jonathan Latham, GMO Golden Rice Offers No Nutritional Benefits Says FDA, Independent Science News, 3.06.18
- Belinda Martineau, Golden Rice Showcases Both the Potential Benefits and Potential Risks of Crop Genetic Engineering, https://biotechsalon.com, 1.06.18
- Belinda Martineau, Golden rice: Of good intentions, insertional mutants, human error, and the need for better regulation of GMOs, https://biotechsalon.com, 3.08.18
- Jacqueline A. Paine, et al., 2005, Improving the nutritional value of Golden rice through increased pro-vitamin A content, Nature Biotechnology 23:4
- Laureates Letter Supporting Precision Agriculture (GMOs), 29.06.16, http://supportprecisionagriculture.org
Photo Creative Commons
No comments:
Post a Comment
Thanks for your comment. All comments are moderated before they are published.